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ABSTRACT:  The guiding equations of transversely isotropic Dual Phase Lag Thermo-elasticity (DPLT) along 

with the magnetic field were solved using the surface wave solution. Further, the frequency equation for 

Rayleigh waves is calculated by applying the particular solution using the boundary conditions at a surface 

which is thermally shielded as well as isothermal stress free. These conditions were also approximated to 

find the numerical solution for the non-dimensional velocity of Rayleigh waves. Later in this present work the 

Rayleigh wave’s speed is represented graphically for the various types of thermo-elasticity i.e. Lord and 

shulman thermo-elasticity (LS-T), coupled thermo-elasticity (CT), Dual Phase Lag Thermo-elasticity (DPLT) 

and magnetic field. The effect of Dual Phase Lag (DPL), transverse isotropy and Magnetic field are also 

monitored for the speed of Rayleigh wave. 

Keywords: Generalized thermo-elasticity, Magnetic Field, Rayleigh wave, frequency equation, Lord-shulman Theory 
(L-S-T), Dual –Phase-Lag (DPL). 

I. INTRODUCTION 

Biot  [1] proposed theory of classical dynamical coupled 
thermo-elasticity (CDCT) , further sequentially to 
generalize the thermo-elastic theories the extended 
version of the classical-dynamical-coupled-thermo-
elasticity (CDCT) was developed by Lord & Shulman 
(LS) [2] and Green & Lindsay (GL) [3] by introducing the 
concept of one relaxation-time and two relaxation time 
respectively and also considering the field equation to 
be hyperbolic these theories also relate heat to be a 
wave and on comparing these theories with those of 
Biot speed of heat propagation is predicted to be finite. 
Hetnarski and Ignaczak [4] also discussed the theories 
related with generalized thermo-elasticity. The concept 
of Dual-Phase-Lag-Thermo-elastic-Model (DPLTEM), 
which is the modified form of the classical thermo-
elastic-model (CTEM), takes into account the phonons 
and electron interaction at the microscopic level was 
broaden by Tzou [5-7] ,by applying the approximation to 
modified fourier law instead of  existing fourier law  
along with two major phase lag to the main two factors 
heat flux as well as the temperature gradient, this new 
model can be applied to explore the micro-structural 
outcomes on the behavior of heat transfer. Singh [8] 
studied the transmission of plane wave through DPLGT 
solid half space Plane wave speed is represented 
graphically in comparison to the angle of transmission 
for various thermoelasticity models namely DPL-model, 
coupled as well as LS. Reflection coefficient was also 
computed for isothermal as well as thermally insulated 
cases for these plane waves it is also shown graphically 
for the above mentioned theories. Deresiewicz [9], 
Sinha and Sinha [10], Othman and Song [11], Roy 
Choudhuri, [12] Singh [13, 14] and  many others has 
studied the wave propagation through coupled and 
generalized thermo-elasticity and obtain remarkable 
results. The concept of Wave propagation has 
innumerous applications in fields like geophysics and 
environmental investigation, seismology, groundwater-

related investigations, mineral and oil study etc. 
Abouelregal [15] by means of dual phase lag model 
(DPLM) the author studied Rayleigh-wave’s in 
thermoelastic solid half-space. M.A. Ezzat et al., [16] 
considered fractional ordered DPL heat conduction law 
to frame a new model which includes of two-
temperature thermoelasticity along with magnetic field 
effect using Laplace transform. M. I. A. Othman et. al 
[17] measured the deformation under the effect of 
gravity of a rotating, generalized-thermoelastic medium  
by means of normal mode analysis method and also 
develops the analytic solution. Author also compared 
the results forecast by L-S Theory and DPLM with and 
without rotation and gravity. Fabrizio, M. and Lazzari, B. 
[18] used various approximations of Tzou’s DPLT to 
obtain heat conductor model which are two in number 
having fading memory, during the process author 
obtained some similarity between the constraints of 
2

nd
law of thermodynamics and asymptotic stability for 

one of model whereas for second model the restrictions 
of thermo-dynamical model seems more deterring as 
compare to those of asymptotic stability. Without using 
laplace transformation El-Karamany, [19] shows the 
unique theorem along with reciprocal theorems for 
DPLT theory. The concept of D-P-L model is already 
explain extensively in the previous article Bharti et al., 
[20]. 

II. BASIC EQUATIONS 

Following Tzou [5-7] the basic equations for anisotropic, 
thermo-elastic DPL body studied under the existence of 
magnetic field H can be illustrated as 

i) Constitutive equations 
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ii) Equation of motion 
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iii) Modified Fourier law 
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iv) Energy equation 
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V) Maxwell equation of stress electric and 
magnetic field  
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IF 0== qττθ , then DPLT reduced to CT theory, also 

if qτ is replaced by )0( =θθ ττ then DPLT reduced to 

the L-S generalized thermo-elasticity theory, further if 
we take H=H0+h along distressed magnetic field  (h) to 
be very minute then the multiplication (hu) along with its  
derivatives will be  overlooked in  linear approximation  
of the  considered equations.  
By taking Eqn. (1) only  and neglecting all forces that 

are operating upon the body.  Further we have, 
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Substituting (5) and (6) into Eqn. (4) we obtain 
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Where T0 is considered as uniform temperature of the 
body and can easily be obtained from the ratio

1
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III. NOMENCLATURE 

µλ , → Lame’s constants 

ije  → Strain tensor 

ijσ
 → Stress tensor 

T → Time 

T0 → Temperature(un-deformed and unstressed 
state) 

T → Absolute temperature 

��� → Displacement vector 

�� → Component of body force F 

� → Density 

ijδ
 

→ Kronecker’s delta 

K → Coefficient of thermal conductivity 

K → �iffusivity coefficient 

C → Specific heat 

cE → Specific heat when  strain is constant 

Q → Measure of  heat generation/unit volume 

	
 
→ Relaxation time 

�� → Heat flux vector 

H → Magnetic Field 

H0 → Magnetic Field constant vector 

βij → Coefficient of thermal expansion 

µe → Magnetic permeability 

	� → Phase lag for  Heat flux 

	
 → Phase lag for Temperature gradient 

cij → Incremental elastic co-efficient 

IV. FORMULATION OF THE PROBLEM 

We consider a homogenous system with a uniform 
temperature distribution under isotropic medium in 
terms of Cartesian type system i.e. (x, y, z) of equation. 
The pole of Cartesian type system is taken on the plane 
surface, where as the axis of Z is taken perpendicular to 

the medium ( )0≥z . Also considering z = 0 as free 

and thermally insulated/isothermal surface. We restrict 
this paper to the plane strain which is parallel to the xz-

plane with ( )0,,0&),0,( 0031 HHuuu
�

as 

displacement vector and magnetic field (constant) 
vector respectively. 

Using Eqns. (6) and (7) we get the equations defining 

motion and that defining heat conduction. 
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V. SURFACE WAVE SOLUTION 

We determine the function ),,(
31

Tuu in half space 

along x-axis as, 
)(

3131 )}(),(),({),,(
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(11) 

Using Eqn. (11) into Eqn. (8)-(10), we get homogenous 
system of 3-equations in terms of  

 ( ϕφφ ,, 31  ) which are as follows. 
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For the non trivial solution of (12)-(14) we get 
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Where 

]
)(

)(

)()(

)[(

*

3

2

033

22

2

033

2

44

2

013

*

3

*

1

2

2

033

44

2

2

011

22

KHc

c

Hc

cHc

K

Kc

Hc

cc

HcckA

ee

e

e

e

µ

ερβ

µ

µ

ρ

µ

ρ

µρ

+
+

+

++

+
−

+
+

−

+−−−=

 

]
*
3

2

*
3

)2
033

(

)
44

2
013

(2

*
3

)2
033

(

22)2
011

2(

*
3

)2
033

(

)*
1

2(2)
44

2
013

(

*
3

)12
033

(

)*
1

2)(
44

2(

*
3

)*
1

2)(2
011

2(

2
033

)
44

2)(2
011

2(
[4

K

c

KHec

cHec

KHec

cHecc

KHec

KccHec

KHec

Kccc

K

KcHecc

Hec

ccHecc
kB

ερ

µ

βµ

µ

ερβµρ

µ

ρµ

µ

ρρ

ρµρ

µ

ρµρ

−
+

++
+

+
+

−−
+

+
+

−++
+

+
+

−−
+

+
−−−

+

+
+

−−−
=

 

]
*
3

2
033

)
44

2(2

*
3

2
033

)*
1

2)(
44

2)(2
011

2(
[6

KH
e

c

ccc

KH
e

c

kcccHecc
kC



















+

−
−

−
+

−−−−
−=

µ

ρερ

µ

ρρµρ

  

The common solutions of Eqns. (12)-(14) are as follows
 

)(
]

3

1

3

1

*[)(
1

ctxik
e

i i

z
i

m
e

i
A

z
i

m
e

i
Az

−
∑
=

∑
=

+
−

=φ
 (16) 

 
)(

]
3

1

3

1

*[)(
3

ctxik
e

i i

z
i

m
e

i
B

z
i

m
e

i
Bz

−
∑
=

∑
=

+
−

=φ

 

(17) 

)(
]

3

1

3

1

*[)(
ctxik

e
i i

z
i

m
e

i
C

z
i

m
e

i
Cz

−
∑
=

∑
=

+
−

=ϕ

 

(18) 

 where * * *

i i i i i iA ,B ,C ,A ,B ,C constants and mi are the roots 

satisfying the equation 

6 4 2m Am Bm C 0− + − =  
(19) 

and the above equation is cubic in m
2
 

In case of surface waves when all roots (m1, m2, m3) are 
complex we assume Re (mi)>0, i = 1, 2, 3 and we use 
only those roots which satisfies following conditions 

∞→→ z,0,, 31 ϕφφ  

Now using this condition (16)-(18) converts to the 

solution for the half space as z>0 
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VI. CONDITIONS ON THE BOUNDARY  

The essential boundary conditions for the free surface z 
= 0 are the vanishing of tangential stress, normal stress 

and heat flux or the temperature potential: 

0zz zzσ σ+ =  (23) 
 

0σ σ+ =xz xz  (24) 
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Where h 0→  for the surface defined as insulated 

thermally,  

∞→h For the surface which is isothermal. 



Bharti et al., International Journal on Emerging Technologies 10(2b): 57-62(2019)                                      60 
 

Using Eqns. (20)-(22) in the boundary condition (23)-
(25), we attain the system of equations homogeneous in 
nature. 
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Non Trivial solution of Eqn. (26)-(28) yield 
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  (29) 

 

Equation (29) is the Rayleigh wave’s frequency equation 
under the impact of magnetic field for transversely 
isotropic /isothermal Dual Phase Lag thermo-elasticity. 

VII. PARTICULAR CASES 

(i) Thermally Insulated Surface: For a surface to be  

thermally  insulated  , we put h 0→  in the frequency 

equation (29) and we get the frequency equation as 
follows 
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Isotropic Thermoelasticity: In case of isotropic 
thermo-elasticity,  

H 0, c c 2 ,
0 11 33

c , c , ,
4413 1 3

K K K
1 3

λ µ

λ µ β β β

= = = +

= = = =

= =

 
if we put  in the Eqn. (28) we get the required frequency 
of Rayleigh wave in case of isotropic thermo-elasticity. 

(ii) Isothermal Surface:  For a surface to be isothermal, 

we put h → ∞  in the frequency Eqn. (29) and we get 

the following frequency equation 
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and if we put  0, K 0, 0β ε= = = in the case isotropic 

thermo-elasticity, then we get the Rayleigh wave’s 
equation in an isotropic as well as elastic solid half 
space as  

2 2 2c c c2(2 ) 4 (1 )(1 )
2 2 2c c c
2 1 2

− = − −  

 
    (32) 

VIII. NUMERICAL RESULT AND DISCUSSION 

For the majority of materials, ε  is very small at a normal 

temperature. For 1ε << , Eqn. (15) has the 

approximated roots as  

44

2
0

2
11

2

2
1

c

Hecc

k

m µρ +−
≅

   (33) 

2
044

2
44

2

2
2

Hec

cc

k

m

µ

ρ

+

−
≅

  (34) 

3

*2
1

2

2
3

K

T
E

ccK

k

m ρ−
−≅

 (35) 

We numerically calculated the Rayleigh wave speed for 
non -dimensional quantities; we considered only the 
thermally insulated surface. Therefore, Eqn. (31) is 
approximated with the help of (33-35) and solved to 
obtain the speed of propagation for particular range of 
non dimensional constants. Following Chadwick and 
Seet [21], we consider the physical quantity of Zinc  
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Fig. 1.  : Dependence of non dimension velocity on the 
frequency of Rayleigh wave in the presence of Magnetic 

effect in DPL Theory. 

 

Fig. 2. Dependence of non dimension velocity under 
Magnetic field on the frequency of Rayleigh wave in 

DPL, LS and GT Theory. 

 

Fig. 3. Dependence of non dimension velocity on the 
Magnetic field in LS and GT Theory .In DPL Theory. 

Fig. 1 states that in DPL Theory, the non dimension 

velocity of Rayleigh wave 

44

2

c

cρ
is calculated for the 

frequency range [0, 20] HZ for various values of H such 
as 0, 0.1 and 0.2. While comparing the three curves 
appearing in figure 1, we observe the dependency of 
Rayleigh wave velocity on the frequency of the wave in 
presence of the considered value of magnetic effect.  
 
Fig. 2 states that the non dimension velocity of 

propagation in case of Rayleigh wave 

44

2

c

cρ   for the 

range of frequency to be  [0, 20] HZ  under  magnetic 

effect  is evaluated  for the D-P-L theory, LS Theory and 

GT Theory and shows the dependence of magnetic 

field. 

Fig. 3 illustrate that the non dimension velocity of 

Rayleigh wave 

44

2

c

cρ
is calculated for the magnetic field 

range [0.2, 1]  calculated for the DPL theory, LS Theory 

and GT Theory. 

IX. CONCLUSION  

The solution of surface wave for the governing equation 

of transversely isotropic dual phase lag (DPL) with 

magnetic field is obtained. By taking into account the 

boundary condition, general solution reduced to 

particular solution in half space. This particular solution 

satisfies the boundary conditions and hence we 

obtained the frequency equation of  the Rayleigh wave 

for a stress free thermally insulated /isothermal .For the 

numerical calculation Rayleigh wave’s frequency 

equation  is then approximated for little thermal coupling 

and then solved numerically for a particular material. 

The non dimensional velocity of transmission is also 

plotted against the frequency, non-dimensional elastic 

and thermal constants in presence of magnetic field 

gives remarkable results. The numerical results indicate 

the effects of dual-phase-lag and transverse isotropy on 

the non-dimensional velocity of propagation 
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